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ABSTRACT

Motivation: We compare stochastic computational methods

accounting for space and discrete nature of reactants in biochemical

systems. Implementations based on Brownian dynamics (BD) and

the reaction-diffusion master equation are applied to a simplified

gene expression model and to a signal transduction pathway in

Escherichia coli.

Results: In the regime where the number of molecules is small and

reactions are diffusion-limited predicted fluctuations in the product

number vary between the methods, while the average is the same.

Computational approaches at the level of the reaction-diffusion

master equation compute the same fluctuations as the reference

result obtained from the particle-based method if the size of the sub-

volumes is comparable to the diameter of reactants. Using numerical

simulations of reversible binding of a pair of molecules we argue

that the disagreement in predicted fluctuations is due to different

modeling of inter-arrival times between reaction events. Simulations

for a more complex biological study show that the different

approaches lead to different results due to modeling issues.

Finally, we present the physical assumptions behind the mesoscopic

models for the reaction-diffusion systems.

Availability: Input files for the simulations and the source code of

GMP can be found under the following address: http://www.cwi.nl/

projects/sic/bioinformatics2007/

Contact: m.dobrzynski@cwi.nl

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

There are many examples of biochemical reactions where

spatial effects play an important role. In case of gene

expression, transcription of a gene involves an encounter of

RNA polymerase and transcription factors with a specific place

on a DNA strand. The inclusion of diffusive effects is also

important in the description of signaling pathways where

additional noise due to sub-cellular compartmentalization can

cause the signal weakening (Bhalla, 2004). Especially if the

reactions are fast, diffusion can be a limiting factor in these

processes since the environment is crowded and the dimensions

of a cell are large compared to the size of the molecules.

Besides, the number of molecules involved can be low which is

an additional source of stochasticity. The presence of the

stochastic effects in biological systems has numerous conse-

quences. One of them is the appearance of redundancy in

regulatory pathways in order to obtain deterministic behavior

(McAdams and Arkin, 1999). Fluctuations may also increase

the phenotypic heterogeneity which in turn improves the

organism’s environmental adaptation (Kærn et al., 2005).
The need for discrete-spatial-stochastic computational meth-

ods is apparent when confronted with theoretical studies of

biochemical networks. Spatial coupling between chemically

reacting systems is known to stabilize the autocatalytic reaction

kinetics (Marion et al., 2002). Numerical analyses of a

population model (Shnerb et al., 2000), a 4-component

autocatalytic loop (Togashi and Kaneko, 2001) or a simple

reaction-diffusion system (Togashi and Kaneko, 2004, 2005)

show the emergence of a new behavior induced by the discrete

nature of reactants. A behavior that could not be captured by

the continuum approaches, let alone methods without space.

The models of calcium wave propagation (Stundzia and

Lumsden, 1996) and intracellular Caþ2 oscillations (Zhdanov,

2002), the study of Soj protein relocation in Bacillus subtilis

(Doubrovinski and Howard, 2005) or MinD/MinE protein

oscillations in Escherichia coli (Fange and Elf, 2006) are

another illustration where the stochastic effects due to space

and discreteness need to be accounted for to explain the

experimental results.
In this article, we focus on some computational approaches

that have been published recently and applied to biological

systems. Two Brownian dynamics-based methods, Green’s

Function Reaction Dynamics and Smoldyn, have been

respectively used to study fluctuations in gene expression

(van Zon and ten Wolde, 2005a; van Zon et al., 2006) and to

model signal transduction in E.coli chemotaxis (Lipkow et al.,

2005; Lipkow, 2006). MesoRD and Gillespie Multi-Particle,

two implementations of the reaction-diffusion master equation,

allowed to study spatio-temporal dynamics of the cellular

processes (Elf and Ehrenberg, 2004; Fange and Elf, 2006;

Rodrı́guez et al., 2006). Finally, the Stochastic Simulation

Algorithm by Gillespie has been frequently applied to

investigate the influence of noise on biochemical networks*To whom correspondence should be addressed.
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(Arkin et al., 1998; Kierzek et al., 2001; Krishna et al., 2005).
A general overview of the main features of the methods can be
found in Takahashi et al. (Takahashi et al., 2005). Here we

compare the various assumptions in the different models
(Table 1) and the computational results. For clarity, we
choose a simplified model of gene regulation as a case study.

Using this model we make a detailed comparison between the
methods. In particular we are looking at fluctuations of the

product protein in gene expression. For a more realistic and
complex biological system we discuss the influence of the
necessary modeling choices.

2 REGIMES AND MODELS IN BIOCHEMISTRY

Biological phenomena in a single living cell span over a wide
range of spatial and temporal scales. Also the number of

molecular species involved can vary significantly.
Concentrations of agents in reactions involved in gene

expression reach nanomoles, while molecules are highly
abundant in metabolic pathways (Fig. 1).
Current silicon cell platforms can often make reliable

predictions for metabolic networks based on ordinary differ-
ential equations (ODEs) using the assumption that concentra-
tions are high and space is not important. Only the rates of the

processes determine changes in concentration of the metabo-
lites. When spatial effects come into play, and the correlation
length (CL)1 decreases, indicating that the volume can no

longer be treated homogeneous, methods based on partial
differential equations (PDEs) are an appropriate approach.
PDEs describe the change of continuous concentrations in time

and also in the spatial dimension. This can be a good model for
biochemical networks where some of the biomolecules are
bound to the membrane like in signaling pathways or in

eukaryotic cells in general because molecules are localized in
compartments such as nucleus, mitochondria, endoplasmic

reticulum, etc. In all of these instances possibly significant
concentration gradients appear, and a simulation may require
spatial methods (Francke et al., 2003).

It is known that the process at the very origin of the whole
cellular machinery, gene expression, gives rise to fluctuations in
the concentration of the final protein products. One of the

sources of stochasticity in gene regulation is the low number of

DNA-binding proteins which have to find their specific target

in order to initiate translation (Halford and Marko, 2004).

A low copy number of regulators and the positioning of genes

on the chromosomes result in decreasing frequency of gene

activation, thus increasing the fluctuations of mRNA

(Becskei et al., 2005).

The discrete nature of matter as expressed in low-molecule-

number conditions violates the continuum hypothesis used in

ODEs and PDEs. A model accounting for this is based on the

chemical master equation (CME), a deterministic linear ODE

for the evolution of the probability density function for

a Markov process (van Kampen, 1997). The Markov process

models the stochastic transitions between discrete states of the

system. In this case stochasticity reflects the fluctuation in the

number of reactants’ collisions, and hence the fluctuation in

the number of molecules participating in a chemical reaction.

The CME approach remains valid as long as the system is well

mixed or, equivalently, has a large correlation length.

The question is whether this is a correct assumption when

dealing e.g. with gene expression. Since there is a specific

binding site which needs to be found by a relatively small

number of competing transcription factors, diffusion might

limit the process thus giving rise to larger fluctuations (Metzler,

2001). The probability of a reaction becomes inherently

dependent on the distance from the target site. As a result the

frequency of diffusion-limited binding events, for times smaller

than the typical time needed to cross the volume, has a power-

law distribution (Redner, 2001) instead of the exponential one

used in mean-field approaches as CME. In order to resolve

single diffusive encounters between biomolecules a more

detailed approach such as Brownian dynamics (BD) is

needed. In this approach, the solvent is treated as a continuum

medium while solute molecules are modeled explicitly in space

(Allen and Tildesley, 2002). Their trajectory is described by a

Table 1. Models, their main features and assumptions with respect to

BD for modeling biochemical systems

Model Space Discrete Extra assumptions

BD Yes Yes –

RDME Yes Yes WM locally

CME No Yes WM

PDE Yes No C, LMA

ODE No No WM, C, LMA

Abbreviations: WM—well-mixed system, C—continuum hypothesis for reac-

tants, LMA—law of mass action.

Fig. 1. Biological problems and relevant models placed in correlation-

length versus number-of-molecules space. Abbreviations for (1) models

with space: BD—Brownian dynamics, PDE—partial differential

equation, RDME—reaction-diffusion master equation and (2) models

without spatial detail: CME—chemical master equation, ODE—

ordinary differential equation. ODE and PDE are deterministic

models; CME, RDME and BD are stochastic. Colour version of this

figure is available as Supplementary material online.

1The correlation length (CL) is a measure of the typical length scale at
which a system retains its spatial homogeneity. Estimating CL can be a
difficult task, since the different sub-processes involved can all have
a different CL.
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random walk due to collisions with the much smaller solvent

molecules. Since the majority of degrees of freedom is

characterized by the fluctuating force, the computational cost

is much smaller than that of molecular dynamics (MD) where

the positions and velocities of all atoms or groups of atoms are

traced.
Unfortunately brute-force BD is too expensive for whole-cell

simulations. Much more promising candidates for a versatile

multi-scale framework are methods based on the reaction-

diffusion master equation (RDME)—an extension of CME for

spatially distributed systems. Space is incorporated by dividing

the volume into smaller sub-volumes, which allows to tackle

inhomogeneities due to diffusion (Gardiner, 1983). Tracking a

single molecule is not possible in this model; unlike in BD,

apart from the occupancy of the sub-volumes no exact

positions of molecules are stored. Diffusive effects are treated

correctly with RDME if the size of a sub-volume is of the order

of the correlation length. Small sub-volumes are important if

we want to account for fluctuations not only due to the

probabilistic nature of chemical reactions but also resulting

from rare binding events in diffusion-limited sparse (i.e. low

concentration) systems. Obviously such detailed simulations are

computationally expensive. Faster computations with large

sub-volumes will give only a crude estimation of higher

moments, but also the average will not be correct if the sub-

volumes’ size is larger than the CL and if the reactions are

non-linear.

3 TEST CASES

3.1 Gene expression

In order to study fluctuations due to low number of molecules

and spatial effects van Zon and ten Wolde (2005b) used a very

simplified model to focus on the first step of gene regulation,

reversible binding of polymerase to the operator site. Only this

step is modeled explicitly in space.
The system under consideration is a closed volume V with a

DNA binding site fixed in the center surrounded by molecules

A diffusing freely with diffusion coefficient D. Once the

DNA�A complex is formed with association rate ka it can

either dissociate back to separate DNA and A (with rate kd) or

a protein P can be produced with a production rate kprod with

subsequent complex dissociation. In both cases dissociation of

DNA�A results in two separate molecules, DNA and A, at

contact. The protein further decays at rate kdec. Obviously the

single protein production step in this model encompasses both

transcription and translation which, as a matter of fact, consist

of many biochemical reactions. Protein degradation is also

simplified and treated as a first-order reaction. Table 2 includes

the chemical reactions in the model.
The assumption that after protein production, molecules are

placed at contact is not fully correct if we treat A as a RNA

polymerase like in the original study. In fact polymerase travels

a certain distance along DNA and unbinds at a position further

than the initial one. Hence, we would like to remark that the

freely diffusing agent A could be a transcription factor or an

activator, which are also reported to occur in small quantities,

instead of the RNA polymerase. Protein P could be seen as

mRNA. In fact the idea of this model is to demonstrate product

fluctuations due to rare events where the frequency is diffusion

limited.

We also assume that the molecules perform a pure random

walk where the mean square displacement of the molecules is

linear with time. The diffusion coefficient and the reaction rates

are taken constant. Therefore we do not consider anomalous

diffusion due to molecular crowding or hydrodynamic effects.

3.2 Signal transduction

In our comparison, we include also a model for diffusion of

phosphorylated CheY in the E.coli chemotaxis pathway as

reported by Lipkow et al. (2005). The cell is modeled as a

rectangular box of length 2.52 mm, and width and height

0.88 mm (see the detailed scheme of the geometry in the

Supplementary Material). Chemotaxis receptors are positioned

inside the cell at the anterior wall. They form an array of 35 by

36 CheA dimers, which amounts to a total size of the receptor

of 510 by 520 nm. Four motors are placed on the long sidewalls

of the cell at 500 nm distance from each other. Each motor

consists of 34 FliM molecules positioned on the walls of a cube

(empty inside) of 40 nm. The cytoplasm contains 8200 CheY

signaling molecules (partially in phosphorylated form), and

1600 CheZ dimers, both diffusing freely.
The reaction network is schematically depicted in Figure 2.

CheY monomers are phosphorylated at the receptors where the

phosphotransfer from CheAp to CheY takes place. Active

CheA dimers (CheA*) produced in this reaction are converted

back to CheAp in an autophosphorylation reaction.

Phosphorylated CheY (CheYp) diffuses in the cytoplasm and

binds reversibly to the FliM motor protein. CheYp can be also

dephosphorylated by CheZ scavengers diffusing in the cyto-

plasm or it can autodephosphorylate. Once dephosphorylated,

CheY converts to CheYp in a relatively slow reaction or it

diffuses back to the receptor to go through the CheA-mediated

phosphorylation. Further, CheYp can diffuse and form again

the FliM�CheYp complex.

4 METHODS

Here we describe shortly the main features of the algorithms used in the

comparison. A more detailed explanation of the models and computa-

tional methods can be found in the Supplementary Material.

Table 2. Reaction scheme and parameters associated with the gene

expression model

Reaction Rate

DNAþA �!
ka

DNA�A 3�109M�1 s�1

DNAþA  �
kd

DNA�A 21.5 s�1

DNA�A �!
kprod

PþDNAþA 89.55 s�1

P �!
kdec

; 0.04 s�1

Initially there is one free DNA site fixed in the center and 18 molecules A

(corresponds to a 30 nm concentration) diffusing with D¼1 mm2s�1.

Computational methods for diffusion-influenced biochemical reactions
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4.1 BD-level

Green’s Function Reaction Dynamics (GFRD) developed by van Zon

and ten Wolde (2005a, b) and Smoldyn (Smoluchowski Dynamics) by

Andrews and Bray (2004), are two particle-based computational

methods, which allow to explicitly model the gene expression problem

described above. Reacting biomolecules are represented as spheres

diffusing freely in a volume, and no excluded volume interactions

are assumed.

GFRD uses the analytical solution of the Smoluchowski diffusion

equation to resolve the reactive collisions. This allows to increase the

simulation time step as compared to the traditional BD approach. This

varying time step depending on the nearest neighbor distance is

particularly efficient for systems with a low number of molecules. The

method is not available as a general tool, and the code has been

obtained from the authors.

Smoldyn, on the other hand is a convenient package. It is a more

coarse-grained approach to BD simulations of biochemical reactions.

The simulation time step is set by the user such that the probability of

any reaction event per time step is small. Also the mean square

displacement of diffusing molecules must allow for correct treatment of

collisions. Here every collision leads to a reaction and the length of the

binding and the unbinding radius (larger than the binding distance) for

every reaction reproduces the macroscopic reaction rate.

4.2 RDME-level

MesoRD (Hattne et al., 2005) simulates trajectories of discrete,

stochastic systems with space described by the RDME. Gillespie

Multi-Particle (GMP) (Rodrı́guez et al., 2006) approximates this

trajectory by splitting diffusion and reactions into two separate

processes. In both cases the simulation volume is divided into sub-

volumes, and the number of reactants inside them is recorded. Thus the

knowledge of the position of the reacting molecules is limited by the

resolution of the space discretization.

MesoRD employs the next sub-volume method (Elf and Ehrenberg,

2004) in order to identify the region of the domain where the next event

triggers. The event can be either a transfer of particles between

neighboring cells due to diffusion or a (bio)-chemical reaction.

GMP is based on the Lattice Gas Automata algorithm (Chopard

et al., 1994) for the diffusion process. The time step in GMP is fixed for

every diffusing species and prescribed by the size of the lattice and

respective diffusion coefficient. Reactions are executed in every sub-

volume between the diffusion steps (different for every species) using

Gillespie’s SSA algorithm. Note that the fixed diffusion time step is in

fact the average time between diffusion events in the RDME. This fact

assures that the macroscopic diffusion in GMP is the same as obtained

from MesoRD.

4.3 CME-based

The widely used stochastic simulation algorithm (SSA) developed by

Gillespie (1976, 1977) generates realizations of the Markov process

whose probability density function is described by the chemical master

equation (Gillespie, 1992). During every step of the simulation two

random numbers are drawn from appropriate distributions, and

provide time and type of the next chemical reaction. Time assumes

continuous values and the state of the system is a discrete number of all

components present. Space is not included in the CME model.

5 RESULTS

5.1 Gene expression

The simplicity of the gene expression model discussed in

Section 3.1 allows to illustrate how the implementations
perform in the regime where spatial fluctuations are important.

Additionally it is possible to address the issue of choosing the
proper lattice size in RDME methods. The results of the

RDME methods are compared to the solution obtained with
CME and with the two BD-level simulations, where single

molecules are modeled explicitly in space.
We analyze the average of the protein level and its noise �

quantified as the ratio of standard deviation over average.
Values of the parameters for the simulation are given in

Table 2. Note that protein fluctuations depend on the fre-
quency of the encounters of A and DNA. The influence of

space is omitted in computational schemes based on CME such
as the SSA algorithm by Gillespie. In that case the distribution

of times between successive bindings of A to the promoter site
on DNA is exponential because the process is assumed to be

dependent on the reactants’ concentration and not on their
position. For spatially resolved methods the distribution of

arrival times changes due to diffusion and results in burst-like
behavior of the protein production. Therefore, we consider this

problem, despite the great simplification of the gene expression,
to be a good setting for the analysis of noise influenced also by

spatial effects.

5.2 Dynamics of gene expression

The parameters we use in the simulations are such that the

production process is limited by diffusion and that new proteins
appear in bursts. We anticipate that stochastic effects will be

significant under such circumstances. This idea is supported in
Figure 3, where the protein level behavior in time is shown.

Fluctuations are higher for methods explicitly accounting
for space (GFRD and Smoldyn) comparing to the widely

used SSA while the averages are the same. The reader will also
notice that GFRD yields significantly larger fluctuations than

Smoldyn—in principle a method at the same level of detail.

Fig. 2. Reaction scheme for the diffusion of CheY through the

cytoplasm. Prefix Che is omitted in the names of the components.

CheA* kinase dimers form an array of 1260 chemotaxis receptors inside

the anterior cell wall. Dotted arrow in the receptor denotes an

autophosphorylation of active dimers, CheA*! CheAp. Solid arrow

in the receptor is a phosphorylation of CheY. Only one flagellar motor

(34 FliM proteins) is depicted here. A total of 8200 CheY signaling

molecules (both non- and phosphorylated) and 1600 CheZ dimers

diffuse freely in the cytoplasm. The biochemical network is described in

the text, diffusion coefficients and reaction rate constants are listed in

the Supplementary Material.

M.Dobrzyński et al.
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The reason for the differences between the two BD methods is

explained further in Section 5.3 and later in the Discussion

Section. For now it is sufficient to say that GFRD produces

more trustworthy results since it is an exact method to solve

diffusion-limited reversible reactions.
The comparison for the RDME-class methods, MesoRD and

Gillespie Multi-Particle, reveals the behavior for an increasing

number of space divisions nsv (the number of sub-volumes per

unit length). We know that for nsv¼1, the well-mixed case,

RDME methods are equivalent with the CME which does not

include space. In Figure 4 we see that as the spatial detail is

increased the predicted fluctuations reach the value given by

GFRD, while the average number of proteins is the same,

within statistical error, for all lattice sizes.

The fact that MesoRD and GMP are able to reproduce not

only the average but also the correct variance of the solution as

compared to the reference result obtained from GFRD, shows

their capability to give good results in the regime where spatial

effects are important (the diffusion-limited regime with small

numbers of molecules).

5.3 Reversible reaction of an isolated pair

In order to explain the differences in noise level predicted by

various methods (Fig. 4) we look at a simple example of an

isolated pair of molecules undergoing a reversible reaction, the

same type of reaction as the first step in the gene expression

model. This will allow us to examine the distribution of times

between successive reactive events.
The target molecule is fixed in the center of the unit volume

V, the second molecule is diffusing freely with diffusion

coefficient D. The molecules can undergo a reversible reaction

with association and dissociation rates, �a and �d, respectively.
We look at the time between consecutive bindings of the

molecules. Simulations with GFRD, Smoldyn, GMP and SSA

reveal that the distribution of inter-binding times is different for

methods with and without space, and also that methods with

spatial detail treat the diffusion-limited reactions differently.

It is known (Redner, 2001) that for a particle diffusing in an

infinite 3D space the probability that it reaches a specific target

at a specified time (the first-passage probability) has a power-

law distribution. This is depicted in the log–log plot in Figure 5.

All spatial methods reproduce the power-law behavior (straight

line) for times shorter than the average time needed to

approach the boundary; a classical result for diffusion in an

infinite 3D space. On such a short timescale, the molecule is not

Fig. 4. Noise in the protein level as a function of nsv—the number of

sub-volumes per unit length, for RDME-level methods. The noise for

SSA, Smoldyn and GFRD is computed from the experiment of

Figure 3. RMFP—the reaction mean free path,2 the estimate of the

correlation length; 2�—size of the sub-volume equal to two reaction

distances which corresponds to two molecules fitting in one sub-

volume. Noise is proportional to the square root of nsv. Average protein

level is the same for all experiments. Colour version of this figure is

available as Supplementary material online.

×

Fig. 3. Sample simulated time trajectories of the protein level for the

gene expression problem. Note that the average is the same for all

methods, while the fluctuations are higher for Smoldyn and GFRD,

methods that include spatial effects. Parameters as in Table 2. Colour

version of this figure is available as Supplementary material online.

Time (s)

Fig. 5. Probability density function of time between subsequent

bindings of an isolated pair of particles, also known as the first-passage

probability. Methods including spatial effects, GFRD, Smoldyn and

GMP, reproduce the power-law behavior for short times. For times

larger than �0.1 s, which is the average time needed to reach the

boundary, the first-passage probability exhibits an exponential decay.

GMP-5 and GMP-30 denote simulations where the whole volume’s side

is divided into 5 and 30 sub-volumes. The left- and rightmost curves are

computed with SSA with the forward reaction rate equal to the intrinsic

�a and to the overall kON reaction rate, respectively. The averages of all

distributions are the same, equal 1/�a, except for the SSA(kON), where

the average is larger and amounts to 1/kON. Note, that the position of

the power-law line is chosen arbitrarily; it only compares the slope of

data for short times obtained from different methods. Colour version of

this figure is available as Supplementary material online.

2The reaction mean free path is defined as , where is the mean time
between reactions, Drel is the relative diffusion coefficient (Baras and
Mansour, 1996; Rodrı́guez et al., 2006; Togashi and Kaneko, 2005).

Computational methods for diffusion-influenced biochemical reactions
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influenced by the finite boundary because it simply did not have

time to travel that distance. On the other hand, diffusion in a

finite volume results in an exponential decay of the first-passage

probability for long times. Exponential behavior is character-

istic to mean-field approaches like the chemical master

equation, where the time of a next reaction is independent of

the molecules’ position (the well-mixed assumption). Note that,

the exponential part of the result obtained with GFRD can be

reproduced by changing the forward reaction rate in SSA from

the intrinsic rate �a to the overall on rate coefficient kON

(Agmon and Szabo, 1990; van Zon and ten Wolde, 2005a),

which ‘includes’ the time needed to reach the target by diffusion

and the time to undergo a chemical reaction.3 It is important

to note that the average of the first-passage distribution

SSA (kON) in Figure 5 differs from the rest of the experiments.

This fact indicates that the simple change of the reaction rates

from the intrinsic to the overall rates which include the effects of

diffusion will not preserve the average time between bindings.

The plot also shows that an increase of spatial resolution of an

RDME-class method like GMP results in the distribution

which can be as close as desired to the exact solution given by

GFRD. For clarity we draw only intermediate distributions

with small (5) and average (30) number of sub-volumes per unit

volume. The simulation with nsv¼50 overlaps with the result

from GFRD.

5.4 CheY diffusion

We have simulated the chemotaxis pathway in E.coli (Lipkow

et al. (2005)) using Smoldyn, MesoRD and GMP. GFRD is

omitted in this case study because it is not suited for solving

such a complex problem. A detailed description of the geometry

and input files for the simulations can be found in the

Supplementary Material.

Since Smoldyn allows for placing and tracking every

molecule in the system, the implementation of the geometry

of the receptor and motors is straightforward: CheA and FliM

molecules can be fixed exactly at their positions. However, one

needs to make an assumption about the placement of the motor

and receptor molecules because Smoldyn does not account for

excluded volume interactions and does not have any special

treatment of reactions near walls. Following the choice made in

Lipkow et al. (2005), we placed the receptor array of CheA

dimers inside the cytoplasm, 20 nm from the anterior wall. The

FliM motor proteins form a cuboid consisting of three layers at

16, 25 and 35 nm distance from the cell wall. Although

molecules are modeled as points in Smoldyn, the macroscopic

reaction rates prescribe the microscopic binding radii for every

bimolecular reaction channel. For the given parameters and a

simulation time step of 0.2 ms the binding distances are 16 nm

for CheY phosphorylation at the receptor, 4 nm for CheZ-

mediated dephosphorylation and 6 nm for binding to the FliM

proteins. Smaller time step of 0.1 ms did not affect the results.

To reach the same level of spatial detail with RDME

methods like MesoRD and GMP, a very fine discretization is

required, since the exact positions of the molecules are known

only up to the size of the sub-volume. We performed

simulations where the side of the sub-volume Lsv equals

20, 40 and 80 nm. For Lsv ¼20 nm, the receptor consists of

one boundary layer of 26 by 26 sub-volumes. In this case a cube

constructed out of 8 sub-volumes approximates a motor. Four

such cubes are positioned on the long sidewalls of the cell’s

surface. When bigger sub-volumes are used, motors occupy

only one sub-volume. The receptor is a one-layer array

of 13�13 and 7�7 sub-volumes for Lsv¼40 and 80 nm,

respectively.

5.5 Dynamics of CheY diffusion

In the computer simulations we first measure the time required

to reach a given level of motor occupancy. Initially all CheA

dimers in the receptor are in phosphorylated form, CheY and

CheZ are freely diffusing in the cytoplasm. The results in

Figure 6 show averages over 10 runs of 1 second for every

method. The number of motor-bound CheYp is growing visibly

slower for motors placed further along the cell. The time

required to reach a threshold of 10 CheYp molecules bound to

a FliM motor cluster predicted by MesoRD is the same within

statistical error for all three sizes of the sub-volumes (Table 3).

GMP produces slightly higher averages which can be attributed

to the splitting error between reaction and diffusion. Molecules

diffuse in ‘bursts’ due to the fixed diffusion time step which

affects the first-passage properties of the diffusing front while

the macroscopic mean square displacement is reproduced

correctly. Finally, the average time to reach the given threshold

is noticeably higher for Smoldyn. This difference cannot be

explained by a wrong treatment in RDME of the non-linear

reactions due to sub-volumes larger than the correlation length.

Simulations for different sizes of the sub-volumes yielded

the same results within statistical error. We contribute the

discrepancy between Smoldyn and other methods to the
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Fig. 6. Change in motor occupancy in time. Time step used in Smoldyn

is 0.2 ms. The side of the sub-volume Lsv in MesoRD and GMP is

40 nm. Results do not change when Lsv¼ 20 or 80 nm is used. Colour

version of this figure is available as Supplementary material online.

3The overall on reaction rate equals , where �a is the intrinsic association
rate, and KD is the diffusion-limited reaction rate given by 4��D,
dependent on the reaction distance � and the relative diffusion
coefficient D of two reacting molecules. Note that inverses of rates
are equivalent to quantities with a dimension of time.
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difference in the modeling of receptor and motors. In MesoRD

and GMP a reaction may occur when reactants are in the same

sub-volume. For BD-based methods like Smoldyn, two reacting

molecules need to be within the binding radius in order for an

event to occur. This is a stricter constraint because it is possible

that two molecules may simply pass each other despite being in

a very close vicinity which would result in a reaction in RDME-

level methods (unless the discretization is such that each sub-

volume contains just one motor molecule).
Another property of the CheYp diffusion model we have

studied is the average and the noise in the motor occupancy in

steady-state (Table 4). For MesoRD and GMP we pick the

simulations with 40 nm sub-volumes. Both RDME-level

methods yield very similar results, although again averages

from GMP are slightly higher than those obtained from

MesoRD; Smoldyn computes �20% lower averages. Note the

interesting effect regarding noise in the motor occupancy,

which increases for motors placed further from the receptor.

This behavior of noise can be attributed to the concentration

gradient of CheYp (high at the receptor and low at the

posterior end). A smaller CheYp concentration at motor four

compared to motor one results in a drop of the average motor

occupation, and causes the fluctuations in binding to the FliM

cluster to increase.

Additionally, we provide the SSA result for the motor

occupancy (lower-right plot in Fig. 6 and Table 4) with the

same reaction rates as in the other simulations. The occupancy

for only one motor cluster is shown because all of them are

equivalent if space is not included. This is clearly a wrong

approach to model CheY diffusion, nevertheless it gives an
indication of the error one can make when spatial information
is omitted either by not accounting for geometry or by lack of

correction in the diffusion-limited reaction rates. The average
occupation which is higher than in the other methods is a direct
consequence of a lack of delay due to the diffusion of CheYp

towards the motors. Lower noise, on the other hand, results
from the constant, and immediate supply of reactants while in
case of simulations accounting for space, the supply is

considerably lower due to the appearance of the CheYp
concentration gradient.

6 DISCUSSION

The computational methods for modeling biochemical systems

with single-particle and spatial detail compared in this study are
based on BD and RDME models. In principle they are all
suited for application to systems with a low molecule number

and a short correlation length. The need for methods in this
regime is steadily increasing as new results of experiments on
biochemical reactions in single biological cells appear (Acar

et al., 2005; Golding et al., 2005; Pedraza and van
Oudenaarden, 2005; Rosenfeld et al., 2005). A theoretical
study of simple systems as the gene expression shows that

fluctuations arise in diffusion-limited processes not only due to
the small number of reactants but also resulting from spatial

effects (van Zon et al., 2006).
In the comparison for the simple gene expression test case we

show that not all methods compute fluctuations correctly,

although the average is the same as those given by the mean-
field models (CME, ODE, PDE). Note that in general, if
reactions are non-linear, one cannot expect RDME methods to

give a correct estimate of the average when the sub-volumes are
larger than the correlation length because concentration
gradients are not represented within a sub-volume. Smoldyn

yields much smaller fluctuations compared to GFRD, even
though both methods are BD-based (Fig. 3).The reason for the
incorrect prediction of the second moment by Smoldyn lies in

the way it deals with diffusion-limited reversible reactions.
The assumption that every collision is reactive leads to the
introduction of the unbinding radius such that it reconstructs the

macroscopic geminate recombination probability (more details
on Smoldyn in the Supplementary Material). By doing so part

of the spatial fluctuations is ‘averaged’ and the resulting first-
passage probability lies between the exact solution of the
Smoluchowski diffusion equation obtained with GFRD and

the mean-field result from SSA for the well-mixed
system (Fig. 5).
The methods at the level of the RDME, MesoRD and GMP,

are able to predict correctly the fluctuations. The key issue here is
to choose the space discretization (division into sub-volumes)
such that the size of a single sub-volume is of the order of the

system’s correlation length. Otherwise the assumption about the
local independence of the reaction probability from the inter-
particle distance does not hold. If the requirement of well-mixed

sub-volumes is not satisfied, spatial fluctuations are averaged
which is clearly visible in Figure 4. For a small number of volume
sub-divisions both the noise in the protein level and the

distribution of times between bindings approach the prediction

Table 3. Average time (in seconds) to reach motor occupancy of 10

CheYp molecules

Method Comments TM1 TM2 TM3 TM4

Smoldyn �t ¼ 0.2 ms 0.11 0.19 0.22 0.29

MesoRD Lsv ¼ 20 nm 0.06 0.10 0.15 0.21

MesoRD Lsv ¼ 40 nm 0.06 0.11 0.15 0.22

MesoRD Lsv ¼ 80 nm 0.06 0.10 0.14 0.19

GMP Lsv ¼ 40 nm 0.06 0.08 0.17 0.23

Results are averaged overss 10 runs for every method.

Table 4. Average and noise in the level of motor occupancy in

steady-state

Method

M1 M2 M3 M4

h N i � h N i � h N i � h N i �

Smoldyn 13.9 0.20 13.2 0.21 12.5 0.23 12.4 0.23

MesoRD 19.1 0.17 18.0 0.18 16.5 0.20 16.0 0.22

GMP 20.3 0.15 19.0 0.16 18.6 0.16 18.1 0.16

SSA 27.5 0.08

Averages were computed from simulations of length 21 s after the equilibration

period of 1 s. Parameters of the simulations are the same as in Figure 6. MesoRD

and GMP used Lsv ¼ 40 nm.
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from the CME model. On the other hand, if the number of sub-
volumes increases up to the limit where two molecules fill

completely one sub-volume,4 the first-passage probability

gradually recovers the desired characteristics typical for the
diffusion process in a closed volume: power-law behavior for

short times and exponential decay for long times (Fig. 5).
A word of caution about the notion of exact prediction of

fluctuations needs to be added here. Although we treat noise

computed with GFRD as a reference value, one should bear in

mind that this is a result of fluctuations with a rather simple BD
model for chemical reactions. We are ignoring here other,

possibly important, microscopic effects, like hydrodynamic

interactions, electrostatic forces or molecular crowding. These

certainly affect the diffusion process (Echeverı́a et al., 2006) but
their significance for enhancing noise in biological systems is an

open issue. Methods like GFRD which solve numerically the

Smoluchowski model for diffusion-limited chemical reactions
will provide an upper bound for the magnitude of fluctuations

if compared to mesoscopic methods based on the master

equation. The latter contain additional physical assumptions

(Table 1) in order to simplify computations at the cost of
averaging microscopic phenomena.

In Section 5.3 we argue that for a reversible reaction of a pair
of particles the methods reproduce the first-passage probability

differently, which is the cause of the variation in noise for the

gene expression case. The power-law behavior for short

departures from the target diminishes as the spatial detail is
decreased, which is equivalent to: increasing the size of sub-

volumes in MesoRD and GMP, increasing the difference

between the binding and the unbinding radius for the reversible
reaction in Smoldyn, and obviously the well-mixed postulate in

SSA. The power-law region constricts also with increasing

number of molecules or with accelerating the diffusion process

(not shown in this study). Then the system moves away from
the low-molecule-number and the short-correlation-length regime

and the distribution converges to the mean-field exponential

behavior. This can be properly approximated either by RDME-

level methods with a coarse discretization or simply by the SSA
algorithm. If the overall forward reaction rate kON is taken

instead of the intrinsic �a, the SSA is also able to reproduce the

exponential decay of the first-passage probability equal to the
one obtained from GFRD or RDME methods with a large

number of sub-volumes. However, for obvious reasons the

power-law part is not recovered (in SSA the next event is drawn

from the Poisson distribution), and hence the average inter-
binding time is larger than that of GFRD.

Whereas the previous examples show the biophysical
behavior of the methods for diffusion-limited reactions, we

discuss in Sections 5.4 and 5.5 a more realistic biological

problem, the chemotaxis pathway in E.coli (Lipkow, 2006;

Lipkow et al., 2005). There it is shown that modeling aspects
and their consequences for the computational approaches can

result in different predictions of averages and noise.

Qualitative estimates addressing the computational cost of

the mesoscopic methods considered here are given in Table 5.

GFRD and Smoldyn scale in a manner typical for BD-based

methods. Their main computational cost lies in computing the

next position for every molecule (involves drawing few random

numbers) and computing distances between reacting molecules,

typically a N2 operation if no neighbor list technique is applied.

Differences in computational time may arise, however, because

GFRD is an event-driven scheme while Smoldyn uses a fixed

time step. Choosing the right �t in the latter is not a completely

arbitrary procedure since one has to assure that the probability

of events per time step is small. In GFRD the maximum

simulation time step during an iteration depends on the

distance of the molecules to the target. If the total number of

molecules decreases, the inter-particle distances increase, thus

making a larger time step possible. Using similar arguments one

can explain differences in the cost of performing diffusion in

MesoRD and GMP (the first is an event-driven scheme, the

latter uses a fixed �t). Obviously the number of molecules of a

given species in the sub-volume has to be used instead of the

inter-particle distance. Then, the average time between diffusive

jumps, h�Di, in MesoRD is inversely proportional to that

quantity (see the caption of Table 5. Additionally, thanks to the

next sub-volume method, MesoRD finds sub-volumes where

the next event occurs instead of looping over the whole volume.

On the other hand, GMP favors higher densities because,

contrary to all other methods, particles can be diffused in bulk

rather than one-by-one. The computational cost of the two

Table 5. Scaling of the computational cost for the spatial discrete

methods presented in this comparison

Method Computational cost Comment

GFRD

(event-driven)

�
P

S NS

�
P

NR

Q
S2R NS

Diffusive movements.

Reactive distances.

Smoldyn

(fixed time step)

As GFRD As GFRD.

MesoRD

(event-driven)

� logNR

� logNsv

� h�Di
�1

� h�Ri
�1

Gibson and Bruck (2000).

A sub-volume adds

a diffusive reaction.

GMP* �
P

S NS **

� NR

� ��1D

� h�Ri
�1

Diffusive movements.

As in the SSA.

Fixed diffusion time step.

where:

h�Di / L2
sv=D �Nsv=NS; h�Ri / L3

sv=kR �
Q

S2R Nsv=NS; �D / L2=D �N�2=3sv :

*The scheme is event-driven for reactions but the diffusion time step �D is fixed.

The diffusion time step is assigned for every diffusing species.

**If NS/Nsv4 90 molecules are moved in bulk, otherwise one-by-one in �D.

Note that for event-driven schemes, the cost of diffusive movements or of

computing reactive distances is given per iteration time step.

Abbreviations: NS—number of molecules of a given species, NR—number of

reaction channels, Nsv—the total number of sub-volumes, h �R i—average time

between reactions, h�Di—average time between diffusive movements,

D—diffusion coefficient, kR—rate of reaction R, Lsv—length of the sub-volume,

L—length of the total volume.

4In the physical picture, if the size of the sub-volume is further
decreased, the probability of finding two molecules, which in reality
have a certain diameter, is zero. This can be done in RDME-level
methods since they do not model single molecules but their population
in sub-volumes. Such an operation is not physical, however
[see Materials and Methods section in Fange and Elf (2006)].
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RDME-level methods differs also in scaling with the number of

reaction channels NR. The usage of the SSA scheme in GMP

results in linear scaling with NR; MesoRD achieves approxi-

mately log NR scaling. Note that a diffusion event in the latter

method is treated similarly as a reaction, and is also entered

into an event queue.
Results for the test cases give an additional indication of

performance. In case of the gene expression model general tools

like Smoldyn, MesoRD or GMP will not outperform sig-

nificantly the supposedly more expensive GFRD since they are

not optimized for this very specific problem. On the other hand

GFRD needs tailoring to every new problem and in general is

implementation-wise difficult to adjust in order to tackle bigger

problems. Computations of the CheY model showed a similar

performance of all the methods. Smoldyn was only approxi-

mately twice slower than MesoRD and GMP, and appeared to

be the most flexible method from the modeling point of view.

For example, it allows to construct a more realistic, disc shape

of the FliM motor cluster without any additional efficiency

penalty. Such geometry of the motor implemented in RDME-

level methods requires a much finer spatial resolution, which

adds a significant computational cost.
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